Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Molecules ; 25(19)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1389458

RESUMEN

A novel series of some hydrazones bearing thiazole moiety were generated via solvent-drop grinding of thiazole carbohydrazide 2 with various carbonyl compounds. Also, dehydrative-cyclocondensation of 2 with active methylene compounds or anhydrides gave the respective pyarzole or pyrazine derivatives. The structures of the newly synthesized compounds were established based on spectroscopic evidences and their alternative syntheses. Additionally, the anti-viral activity of all the products was tested against SARS-CoV-2 main protease (Mpro) using molecular docking combined with molecular dynamics simulation (MDS). The average binding affinities of the compounds 3a, 3b, and 3c (-8.1 ± 0.33 kcal/mol, -8.0 ± 0.35 kcal/mol, and -8.2 ± 0.21 kcal/mol, respectively) are better than that of the positive control Nelfinavir (-6.9 ± 0.51 kcal/mol). This shows the possibility of these three compounds to effectively bind to SARS-CoV-2 Mpro and hence, contradict the virus lifecycle.


Asunto(s)
Antivirales/síntesis química , Betacoronavirus/enzimología , Hidrazonas/síntesis química , Inhibidores de Proteasas/síntesis química , Pirazinas/síntesis química , Pirazoles/síntesis química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/farmacología , Betacoronavirus/química , Betacoronavirus/efectos de los fármacos , Sitios de Unión , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Descubrimiento de Drogas , Humanos , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Neumonía Viral/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Pirazinas/farmacología , Pirazoles/farmacología , SARS-CoV-2 , Termodinámica , Interfaz Usuario-Computador , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
2.
J Virol ; 95(21): e0097521, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1361966

RESUMEN

Repurposing FDA-approved inhibitors able to prevent infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could provide a rapid path to establish new therapeutic options to mitigate the effects of coronavirus disease 2019 (COVID-19). Proteolytic cleavages of the spike (S) protein of SARS-CoV-2, mediated by the host cell proteases cathepsin and TMPRSS2, alone or in combination, are key early activation steps required for efficient infection. The PIKfyve kinase inhibitor apilimod interferes with late endosomal viral traffic and through an ill-defined mechanism prevents in vitro infection through late endosomes mediated by cathepsin. Similarly, inhibition of TMPRSS2 protease activity by camostat mesylate or nafamostat mesylate prevents infection mediated by the TMPRSS2-dependent and cathepsin-independent pathway. Here, we combined the use of apilimod with camostat mesylate or nafamostat mesylate and found an unexpected ∼5- to 10-fold increase in their effectiveness to prevent SARS-CoV-2 infection in different cell types. Comparable synergism was observed using both a chimeric vesicular stomatitis virus (VSV) containing S of SARS-CoV-2 (VSV-SARS-CoV-2) and SARS-CoV-2. The substantial ∼5-fold or higher decrease of the half-maximal effective concentrations (EC50s) suggests a plausible treatment strategy based on the combined use of these inhibitors. IMPORTANCE Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the coronavirus disease 2019 (COVID-2019) global pandemic. There are ongoing efforts to uncover effective antiviral agents that could mitigate the severity of the disease by controlling the ensuing viral replication. Promising candidates include small molecules that inhibit the enzymatic activities of host proteins, thus preventing SARS-CoV-2 entry and infection. They include apilimod, an inhibitor of PIKfyve kinase, and camostat mesylate and nafamostat mesylate, inhibitors of TMPRSS2 protease. Our research is significant for having uncovered an unexpected synergism in the effective inhibitory activity of apilimod used together with camostat mesylate or nafamostat mesylate.


Asunto(s)
Antivirales/farmacología , Benzamidinas/farmacología , Ésteres/farmacología , Guanidinas/farmacología , Hidrazonas/farmacología , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Pirimidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/fisiología , Células Vero , Internalización del Virus , Tratamiento Farmacológico de COVID-19
3.
J Biol Chem ; 296: 100306, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1152462

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Cadenas Pesadas de Clatrina/genética , Endocitosis/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus/efectos de los fármacos , Células A549 , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Chlorocebus aethiops , Cadenas Pesadas de Clatrina/antagonistas & inhibidores , Cadenas Pesadas de Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/virología , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Hidrazonas/farmacología , Lentivirus/genética , Lentivirus/metabolismo , Unión Proteica/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sulfonamidas/farmacología , Tiazolidinas/farmacología , Células Vero
4.
PLoS Biol ; 19(2): e3001091, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1102372

RESUMEN

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/diagnóstico , COVID-19/virología , Genética Inversa , SARS-CoV-2/genética , Células A549 , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Chlorocebus aethiops , Codón , Humanos , Hidrazonas/farmacología , Ratones , Morfolinas/farmacología , Sistemas de Lectura Abierta , Plásmidos/genética , Pirimidinas/farmacología , Serina Endopeptidasas/metabolismo , Células Vero , Proteínas Virales/metabolismo
5.
Cell Calcium ; 94: 102360, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1064903

RESUMEN

Ion channels are necessary for correct lysosomal function including degradation of cargoes originating from endocytosis. Almost all enveloped viruses, including coronaviruses (CoVs), enter host cells via endocytosis, and do not escape endosomal compartments into the cytoplasm (via fusion with the endolysosomal membrane) unless the virus-encoded envelope proteins are cleaved by lysosomal proteases. With the ongoing outbreak of severe acute respiratory syndrome (SARS)-CoV-2, endolysosomal two-pore channels represent an exciting and emerging target for antiviral therapies. This review focuses on the latest knowledge of the effects of lysosomal ion channels on the cellular entry and uncoating of enveloped viruses, which may aid in development of novel therapies against emerging infectious diseases such as SARS-CoV-2.


Asunto(s)
Antivirales/uso terapéutico , COVID-19/virología , Canales Iónicos/fisiología , Lisosomas/virología , SARS-CoV-2/fisiología , Envoltura Viral/fisiología , Internalización del Virus , Desencapsidación Viral , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Antivirales/farmacología , Diseño de Fármacos , Endocitosis , Endosomas/metabolismo , Endosomas/virología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Humanos , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Canales Iónicos/clasificación , Lisosomas/enzimología , Lisosomas/metabolismo , Modelos Biológicos , Morfolinas/farmacología , Morfolinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , ATPasas de Translocación de Protón Vacuolares/fisiología , Internalización del Virus/efectos de los fármacos , Desencapsidación Viral/efectos de los fármacos
6.
Cells ; 10(1)2020 12 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1011425

RESUMEN

The PIKfyve inhibitor apilimod is currently undergoing clinical trials for treatment of COVID-19. However, although apilimod might prevent viral invasion by inhibiting host cell proteases, the same proteases are critical for antigen presentation leading to T cell activation and there is good evidence from both in vitro studies and the clinic that apilimod blocks antiviral immune responses. We therefore warn that the immunosuppression observed in many COVID-19 patients might be aggravated by apilimod.


Asunto(s)
Antivirales/efectos adversos , Tratamiento Farmacológico de COVID-19 , Hidrazonas/efectos adversos , Morfolinas/efectos adversos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/efectos adversos , Pirimidinas/efectos adversos , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , COVID-19/inmunología , Humanos , Hidrazonas/farmacología , Morfolinas/farmacología , Péptido Hidrolasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteasas/farmacología , Pirimidinas/farmacología , Serina Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA